Adversarial Perturbations Against Deep Neural Networks for Malware Classification

نویسندگان

  • Kathrin Grosse
  • Nicolas Papernot
  • Praveen Manoharan
  • Michael Backes
  • Patrick D. McDaniel
چکیده

Deep neural networks, like many other machine learning models, have recently been shown to lack robustness against adversarially crafted inputs. These inputs are derived from regular inputs by minor yet carefully selected perturbations that deceive machine learning models into desired misclassifications. Existing work in this emerging field was largely specific to the domain of image classification, since the highentropy of images can be conveniently manipulated without changing the images’ overall visual appearance. Yet, it remains unclear how such attacks translate to more securitysensitive applications such as malware detection–which may pose significant challenges in sample generation and arguably grave consequences for failure. In this paper, we show how to construct highly-effective adversarial sample crafting attacks for neural networks used as malware classifiers. The application domain of malware classification introduces additional constraints in the adversarial sample crafting problem when compared to the computer vision domain: (i) continuous, differentiable input domains are replaced by discrete, often binary inputs; and (ii) the loose condition of leaving visual appearance unchanged is replaced by requiring equivalent functional behavior. We demonstrate the feasibility of these attacks on many different instances of malware classifiers that we trained using the DREBIN Android malware data set. We furthermore evaluate to which extent potential defensive mechanisms against adversarial crafting can be leveraged to the setting of malware classification. While feature reduction did not prove to have a positive impact, distillation and re-training on adversarially crafted samples show promising results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attack and Defense of Dynamic Analysis-Based, Adversarial Neural Malware Classification Models

Recently researchers have proposed using deep learning-based systems for malware detection. Unfortunately, all deep learning classification systems are vulnerable to adversarial attacks where miscreants can avoid detection by the classification algorithm with very few perturbations of the input data. Previous work has studied adversarial attacks against static analysisbased malware classifiers ...

متن کامل

Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples

Deep Neural Networks (DNNs) have achieved remarkable performance in a myriad of realistic applications. However, recent studies show that welltrained DNNs can be easily misled by adversarial examples (AE) – the maliciously crafted inputs by introducing small and imperceptible input perturbations. Existing mitigation solutions, such as adversarial training and defensive distillation, suffer from...

متن کامل

Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks

Deep learning has become the state of the art approach in many machine learning problems such as classi€cation. It has recently been shown that deep learning is highly vulnerable to adversarial perturbations. Taking the camera systems of self-driving cars as an example, small adversarial perturbations can cause the system to make errors in important tasks, such as classifying trac signs or det...

متن کامل

Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks

High sensitivity of neural networks against malicious perturbations on inputs causes security concerns. We aim to ensure perturbation invariance in their predictions. However, prior work requires strong assumptions on network structures and massive computational costs, and thus their applications are limited. In this paper, based on Lipschitz constants and prediction margins, we present a widel...

متن کامل

On Detecting Adversarial Perturbations

Machine learning and deep learning in particular has advanced tremendously on perceptual tasks in recent years. However, it remains vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system while being quasi-imperceptible to a human. In this work, we propose to augment deep neural networks with a small “detector” subnetwork which is trained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.04435  شماره 

صفحات  -

تاریخ انتشار 2016